CONNIE experiment overview

Javier Tiffenberg[†] for the CONNIE Collaboration

December 6, 2012

† Fermi National Laboratory

CONNIE goal: lower the energy threshold

Look for coherent ν -nucleus interactions by measuring the ionization produced by the nuclear recoils

CONNIE goal: lower the energy threshold

Look for coherent ν -nucleus interactions by measuring the ionization produced by the nuclear recoils

ONNIE Particle ID Setup Event rate Shield Future Summary

Detector

We use scientific CCDs from DECam

- 10x thicker than most CCDs (250 μ m)
 - \sim 1 gr per CCD
 - allows selection of limited diffusion events: self-shielding
- pixel size of 15 μ m
- CCDs cooled to -150 C to achieve RMS of 2 e⁻
- Threshold of 40 eVee

10 scientific CCDs are installed in a low radiation package inside a copper box

CONNIE Particle ID Setup Event rate Shield Future Summary

00 000 0 0 0 0

Location: Nuclear power plant in Angra, Brazil

Event rate

For 10 grams: \sim 0.3 ν elastic scattering events per day

 CONNIE
 Particle ID
 Setup
 Event rate
 Shield
 Future
 Summar

 DO
 000
 0
 0
 0
 0
 0

Event rate

For 10 grams: \sim 0.3 ν elastic scattering events per day

Background: without shielding nor event selection

neutrons: ~ 600 events per day **gammas:** ~ 2 events per day

 CONNIE
 Particle ID
 Setup
 Event rate
 Shield
 Future
 Summary

 00
 000
 0
 0
 0
 0
 0

Shielding: preliminary design.

Background measurement.

ONNIE Particle ID Setup Event rate Shield **Future** Summary

Scalability

Summary

- The CCDs are a good candidate for detecting low energy ν events. The lack of mass is compensated by their low threshold.
- Scalable and compact.
- Neutron background is a big issue. Needs shielding.
- Self-shielding capability for gammas by selecting limited diffusion events.
- Neutron and gamma detectors inside the dewar.
- Ongoing efforts by Fermilab and Chicago University to measure the quenching factor at low energies.
- The connie system will be ready to ship in early 2013 and we expect to complete the installation at the Angra Nuclear Power Plant before June 2013.